2 Схемы

Содержание

Элементы и системы автомобильной электроники

2 Схемы

2 Схемы

С каждым годом автомобили становятся все безопаснее, экологичнее, дешевле в эксплуатации, а главное надежнее и комфортнее. Такой стремительный прогресс был бы невозможен, если бы в авто не было много различной электроники. Здесь мы рассмотрим решения в этой области и изучим важные нормы, касающиеся двух приоритетных вопросов проектирования автомобильной электроники – ее безопасности и надежности.

Современные автомобили оснащены модулями управления для рабы важнейших устройств и систем, в том числе: привода, безопасности и помощи водителю, оборудования и инженерных систем (дверей, окон, стеклоочистителей, освещения, кондиционирования воздуха) и систем, предоставляющих информацию и развлечения. Функционал и количество драйверов различаются в зависимости от производителя и модели автомобиля, а сам владелец обычно даже не знает что в нем установлен тот или иной модуль, пока он не выйдет из строя.

Также отсутствует стандартизированная номенклатура, а это означает, что названия некоторых модулей иногда неправильно взаимозаменяемы. Примером может служить назначение одной и той же роли контроллерам PCM (модуль управления трансмиссией) и ECM (модуль управления двигателем).

ECM — это модуль управления двигателем, часто также называемый ECU. Его задачей является обеспечение безопасной и эффективной работы мотора, в том числе подбором правильных пропорций топлива и воздуха в смеси и определением соответствующего момента ее воспламенения. ECM дополняется TCM (Transmission Control Module), отвечающим за управление работой автоматической коробки передач.

В основном ECM и TCM представляют собой отдельные блоки с собственным процессором и памятью. Большую часть времени они действуют независимо обмениваясь информацией только тогда, когда ситуация требует их сотрудничества. Причем модуль PCM координирует работу обоих этих драйверов.

Датчики ECM и TCM

Модули управления двигателем и автоматической коробкой передач работают с несколькими датчиками. Примером может служить датчик положения коленчатого вала, который является одним из наиболее важных источников информации для ECM. Он измеряет угловое положение коленвала, позволяя рассчитать скорость его вращения.

Элементы и системы автомобильной электроники

На основе его значения стабилизируется работа двигателя на холостом ходу, удаляются пары топлива из бака, контролируется работа впускного коллектора и работа системы изменения фаз газораспределения. Обычно датчик положения коленвала представляет собой индуктивный или датчик Холла, который работает в сочетании с измерительной шкалой.

Информация полученная от датчика дополняется результатами датчика Холла, измеряющего положение распределительного вала. При определении подходящей дозы топлива модуль управления двигателем опирается на данные потенциометрического датчика, измеряющего угол открытия дроссельной заслонки. Другим важным измерительным элементом является лямбда-зонд.

По его показаниям создается топливно-воздушная смесь оптимального состава, при котором уровень выброса вредных соединений в атмосферу наименьший. Это должна быть стехиометрическая смесь с 14,7 кг воздуха на каждый килограмм сожженного топлива. Тогда отношение воздуха к топливу, обозначаемое буквой “лямбда”, равно 1.

Более высокое значение соответствует обедненной смеси с избытком воздуха и недостаточным количеством топлива. Значение ниже 1 указывает на богатую смесь с недостаточным количеством воздуха и слишком большим количеством топлива. Зонд помещается в выхлопной канал. Это трубка, измерительная часть которой изготовлена из диоксида циркония. Характерной особенностью этого твердого электролита является то, что при температуре выше примерно +300°С он проницаем для ионов кислорода.

Трубка с обеих сторон покрыта тонким пористым слоем платины, выполняющим роль электрода. Поток ионов генерирует напряжение и чем больше кислорода в выхлопных газах, тем оно ниже, и наоборот, малое количество ионов кислорода создает более высокое напряжение. Часто используются несколько лямбда-зондов. Их обычно нагревают, чтобы они быстрее достигли рабочей температуры.

ECM также опирается на показания датчиков контролирующих параметры всасываемого воздуха. Один из них представляет собой массовый расходомер, расположенный во впускной трубе между воздушным фильтром и впускным коллектором. Там же установлен датчик температуры воздуха, обычно резистивный.

На основании информации о количестве и температуре всасываемого воздуха блок управления двигателем регулирует состав топливовоздушной смеси и угол опережения зажигания. Если эти датчики повреждены – двигатель запускается с трудом, а расход топлива увеличивается. Датчик сопротивления также измеряет температуру охлаждающей жидкости и косвенно температуру двигателя.

К блоку двигателя прикреплен пьезоэлектрический датчик измеряющий амплитуду его колебаний. Таким образом выявляется нежелательный стук, возникающий, например, в случае некачественного топлива, чрезмерной нагрузки на двигатель, перегрева, выхода из строя свечи зажигания. Кроме того, обедненная топливно-воздушная смесь и преждевременное зажигание способствуют неконтролируемому сгоранию.

Поэтому для предотвращения детонации контроллер ЭСУД на основе показаний этого датчика регулирует состав смеси таким образом, чтобы компенсировать нехватку топлива или уменьшить угол опережения зажигания. Поскольку модуль управления двигателем может различать в каком цилиндре происходит неконтролируемое сгорание, достаточно одного пьезоэлектрического датчика.

Модуль TCM подбирает правильное передаточное отношение к заданной скорости по показаниям датчика, измеряющего скорость вращения вала на выходе из коробки передач. В случае выхода из строя этого датчика следует ожидать увеличения расхода топлива и сокращения срока службы компонентов коробки передач.

Классификация систем безопасности

Автомобильные системы безопасности можно условно разделить на: активные и пассивные. Они должны предотвратить ДТП, предупредив водителя о возможности возникновения опасной ситуации или облегчив ему сохранение контроля над автомобилем. Системы пассивной безопасности направлены на снижение травм, вызванных аварией, если она все же происходит.

  1. К первой группе относятся следующие системы: ABS (Anti-lock Braking System), предотвращающая блокировку колес при торможении, ACC (Adaptive Cruise Control) — круиз-контроль с автоматическим регулированием скорости в зависимости от дорожной ситуации, поддерживающий безопасную дистанцию до автомобилей спереди, ESC (Electronic Stability Control) — электронная система контроля устойчивости, BLIS (Blind Spot Information System) – информирующая о наличии других транспортных средств в слепой зоне, LDW (Lane Departure Warning) – предупреждающая о выезде с дорожной полосы, AEB (Automatic Emergency Braking) – система экстренного торможения, NVS (система ночного видения) – поддерживающая водителя при движении в темное время суток, RSR (система распознавания дорожных знаков) и TPMS (система контроля давления в шинах), контролирующая давление воздуха.
  2. В свою очередь, к категориям пассивных систем безопасности относятся системы, контролирующие работу подушек безопасности и ремней безопасности, защищающие от повреждения шейных позвонков при ударе, CSS (Child Safety System) и PPS (Pedestrian Protection System), снижение тяжести травм, возникающих при ДТП у детей и прохожих. Далее представляем работу систем активной и пассивной безопасности на примере TMPS, контролирующих подушек безопасности и PPS.

Давление в шинах следует контролировать по соображениям безопасности и эксплуатации. Это связано с тем, что шина может лопнуть. В этом случае водитель теряет контроль над автомобилем и может стать причиной аварии. Кроме того, слишком низкое давление в шинах способствует повышенному расходу топлива. Шины также изнашиваются быстрее. Поэтому уже несколько лет системы TMPS являются обязательными. Они бывают двух категорий: прямые и непрямые системы.

В первой датчики используются также другими системами, обычно датчиками скорости вращения колес, на которых основаны измерения системы ABS. В этом случае принимается во внимание тот факт, что шина, в которой упало давление, быстрее вращается в результате уменьшения наружного диаметра и, следовательно, изменения ее окружности качения.

Преимуществом такого подхода является простота и дешевизна реализации, ведь не нужно добавлять новые элементы, а только модифицировать программное обеспечение системы ABS. Слабой стороной косвенных систем TMPS является их низкая точность. Обычно они сигнализируют о проблеме только когда давление в колесах падает на несколько десятков процентов, ведь будь они более чувствительными, то стали бы источником необоснованных тревог, реагируя даже на небольшое изменение скорости вращения колес вызванное изменением типа дорожного покрытия.

Водитель также никогда не имеет точной информации о текущем давлении в шинах. Если она снижается одинаково во всех колесах, косвенная система TMPS может даже не обнаружить ее, но в случае неравномерного износа шин может сработать ложная тревога. Альтернативой являются прямые системы.

Они основаны на показаниях датчиков давления установленных в каждой шине. Датчики питаются от батареек и оснащены антенной через которую они передают результаты измерений на контроллер.

Элементы и системы автомобильной электроники

Системы прямого контроля давления в шинах работают точнее и быстрее косвенных. В то же время они имеют ряд существенных ограничений: необходимость периодической замены аккумулятора, что обычно предполагает покупку нового датчика и перенастройку системы в случае её замены или замены шин.

Системы подушек безопасности

Автомобили начали оснащаться первыми системами подушек безопасности лет 40 назад. С тех пор были разработаны их различные варианты.

  • Основные из них – подушки безопасности на руле для защиты водителя и в приборной панели для защиты переднего пассажира, задача которых защитить голову и грудь в случае лобового столкновения. Кроме них в авто есть боковые и головные подушки безопасности. Последние иначе известны как воздушные завесы.
  • Боковые подушки безопасности защищают верхнюю часть туловища и таз водителя и переднего пассажира в случае бокового столкновения. Поэтому они устанавливаются на внешнем крае спинок сидений.
  • Воздушные завесы, напротив, расположены в потолке над боковыми окнами с обеих сторон автомобиля. Их работа заключается в защите головы водителя, пассажира на переднем сиденье и людей, занимающих крайние задние сиденья, в случае бокового удара. Также они надуваются в случае лобового удара под углом. Кроме того, подушки безопасности предотвращают выскальзывание и полное выпадение водителя и пассажиров из боковых окон при ударе и в случае опрокидывания машины.

В настоящее время подушки безопасности входят в стандартную комплектацию автомобилей. Такие системы безопасности обычно состоят из контроллера и датчиков, установленных в контроллере или в различных частях авто. К наиболее важным задачам контроллера относятся: анализ данных с датчиков, распознавание того произошедшего события требующего надувания, активация системы которая надувает подушку безопасности и самодиагностика. Драйверы и датчики для систем подушек безопасности в автомобилях предлагаются ведущими производителями электронных компонентов.

Элементы и системы автомобильной электроники

Примером может служить блок управления подушками безопасности Bosch. На основе данных гироскопов, датчиков давления и акселерометров она распознает задние, боковые и лобовые столкновения и фиксирует опрокидывание автомобиля. Точность обнаружения аварии повышена по сравнению с контроллерами предыдущих поколений благодаря внедрению нового алгоритма, анализирующего параметры поглощения кинетической энергии при ударе. Датчики занятости сидений являются дополнительным источником информации, помогающим выбрать настройки безопасности в соответствии с весом, размером и положением тел пассажиров, а также предотвратить ненужное надувание в случае аварии, если сиденье пустует.

Блок управления подушками безопасности считывает данные со встроенных и периферийных датчиков через системную шину и PSI5 (интерфейс периферийных датчиков). На их основе активируется система срабатывания подушек безопасности и зажим натяжителя ремня безопасности, посылается сигнал в топливную систему на прекращение подачи топлива и в систему привода на торможение авто и автоматически информируется система eCall – оповещение экстренных служб об аварии.

Он также включает визуальные и звуковые оповещения о сбое безопасности. Данные о ходе аварии сохраняются в памяти контроллера. Контроллеры Bosch доступны в нескольких версиях с разным функционалом и ценой.

Самая дешевая версия отвечает только основным требованиям по защите пассажиров. Они поддерживают до 16 контуров управления и взаимодействуют с 6 периферийными датчиками. Они предназначены для сегмента недорогих автомобилей. Base и plus поддерживают до 32 контуров управления и работают с 12 датчиками через интерфейс PSI5.

В них встроены датчики определяющие переворачивание автомобиля. В версии плюс доступны дополнительные гироскопы и акселерометры. ISU (Integrated Safety Unit) поддерживает до 48 контуров управления, а через PSI5 можно подключить до 18 датчиков. Как и в плюсовых контроллерах в версии ISU интегрированы дополнительные датчики.

Читать статью  Как менять проводку в автомобиле даже без обучения на автоэлектрика

Полезное: Расчёт цены зарядки электромобиля

Система защиты пешеходов

Среди пострадавших в ДТП с участием автотранспорта пешеходы и велосипедисты также составляют большую группу. Поэтому в автомобилях, помимо решений повышающих безопасность водителей и пассажиров, реализованы системы PPS (Pedestrian Protection System). Их задача – уменьшить масштабы травм людей, сбитых автомобилем. Это особенно касается травм головы в результате удара о капот, переднюю стойку или лобовое стекло, которые обычно наиболее серьезны в таких ситуациях.

В области реализации систем защиты пешеходов используются различные подходы. Обычно их непременным элементом служит встроенный в передний бампер автомобиля датчик давления или акселерометр. Капот слегка приподнимается при обнаружении наезда на пешехода.

При этом между более мягким кожухом и массивным блоком двигателя создается больший зазор, поглощающий энергию удара и смягчающий последствия аварии. Расширением этого решения является установка подушки безопасности под капот авто. Она запускается из прорези при наезде на пешехода, заполняя подкапотное пространство и закрывая часть лобового стекла и боковых стоек.

В дополнение к рассмотренным датчикам, компонентами систем активной и пассивной безопасности в автомобилях являются: ультразвуковые, радарные датчики и камеры. Что касается последних, то те, что установлены в передней части автомобиля, передают информацию, например, следующим системам: LDW (предупреждение о выходе из полосы движения), PD (обнаружение пешеходов) или PCAM (предотвращение/смягчение последствий столкновений с пешеходами), RSR (дорожная система распознавание знаков) и FCW (предупреждение о лобовом столкновении).

Камеры в авто и их применение

Задача – не допустить непреднамеренного выезда водителя за пределы полосы движения. Для этого на изображении снятом камерами, обнаруживаются линии на дороге. Если они пересечены, система LDW посылает предупреждающий сигнал системе рулевого управления, в результате чего происходит автоматическая коррекция колеи. А системы RSR, работая с камерами в передней части автомобиля, распознают проезжающие мимо дорожные знаки.

Элементы и системы автомобильной электроники

PCAM дополняет систему пассивной защиты пешеходов. Задача — распознавать пешеходов и велосипедистов среди объектов движущихся перед автомобилем и предотвращать столкновения с ними. Это намного сложнее чем просто обнаружение автомобилей или других крупных объектов на изображении с камеры. Обычно PCAM использует радарный датчик в дополнение к регистратору изображения.

Эти датчики контролируют пространство в нескольких метрах перед транспортным средством, выполняя различные роли — радар обнаруживает объекты и следит за расстоянием до них с учетом скорости автомобиля, а камера предоставляет информацию системе распознавания изображений, которая определяет тип объекта на основе его высоты, размера и характера движения.

Например, чтобы считаться велосипедистом, он должен различать контуры велосипеда и частей тела человека, сидящего на нем, и сопоставлять их движения с шаблоном, который описывает движения во время езды на велосипеде. Также прогнозируется их возможный дальнейший путь. Если они находятся на пути столкновения с автомобилем, активируются звуковая сигнализация и тормоз.

Здесь стоит упомянуть о конкуренции радаров, которые представляют собой сканеры LiDAR (Light Detection And Ranging). Они излучают цепочки лазерных импульсов в направлении тестируемого объекта с частотой сотни тысяч раз в секунду. Расстояние между сканером и объектом рассчитывается путем измерения времени от отправки им до получения отраженного света. Таким образом создаются облака точек, соответствующие измеренным расстояниям во всех направлениях. Это позволяет составить компьютерную трехмерную карту окрестностей. Преимущество сканеров LiDAR перед радарами связано с их гораздо более высоким разрешением.

Что такое модуль BCM

BCM (модуль управления кузовом) часто является частью PCM. Это системы для управления коммунальными установками и повышения комфорта вождения. Среди функций BCM — адаптивное управление наружным освещением.

Элементы и системы автомобильной электроники

Управляемые таким образом фары излучают луч света с параметрами (длина, форма), которые автоматически адаптируются к условиям движения, встречных автомобилей с противоположного направления, пешеходов, животных или погоды.

Реализация такого функционала стала возможной благодаря оснащению автомобилей камерами установленными в передней части авто, которые следят за движением на дороге и ее окружением. Вторым обязательным элементом такой системы являются матричные светодиодные фары.

Когда камера обнаруживает встречные автомобили или движущийся впереди автомобиль, соответствующие светодиодные модули автоматически выключаются. Это позволяет избежать ослепления других водителей своими огнями. Кроме того, другими возможными вариантами использования адаптивного освещения являются: усиление света при обнаружении дорожных знаков, освещение пешеходов прожектором или регулировка луча в зависимости от погодных условий и типа поверхности.

В настоящее время максимальное разрешение матричных рефлекторов составляет несколько десятков световых точек. Ведутся работы по увеличению его до нескольких сотен тысяч световых точек, что станет возможным благодаря использованию лазеров.

Информация и развлечения

Ожидания от автомобилей растут не только с точки зрения безопасности и комфорта вождения, но все чаще и с точки зрения дополнительных ощущений, что обеспечивают интегрированные информационно-развлекательные системы.

Элементы и системы автомобильной электроники

Это программно-аппаратные решения, обеспечивающие водителей и пассажиров автомобиля аудио-видеоданными, несущими информационный контент, например о текущей дорожной ситуации (погода, пробки, аварии поблизости) и развлекательные (радио, телевидение, доступ к социальным сетям). Связь является важным элементом этих систем, известных как IVI (In Vehicle Infotainment).

Связь с внешним миром изнутри автомобиля повышает безопасность дорожного движения и предоставляет водителям доступ к различным сервисам, не только информативно-развлекательным, но и полезным. Примером может служить возможность удаленного управления домашней автоматикой — есть, например, приложения для удаленного включения и выключения отопления по дороге в доме и сигнализация после въезда автомобиля в гараж.

Примером решения направленного на повышение безопасности является eCall — система быстрого автоматического оповещения экстренных служб об авариях. С развитием сотовых сетей 5G обязательно будут развиваться новые приложения для связи между автомобилями, ими и элементами дорожной инфраструктуры.

Безопасность и надежность

Высокие требования к безопасности и безотказности вынуждают использовать специальные решения в области компонентов и систем автомобильной электроники. Первые должны соответствовать строгим стандартам устойчивости к суровым условиям работы, поскольку в автомобилях электронные компоненты подвергаются воздействию экстремальных температур, вызванных погодными условиями и контактом с нагревательными элементами системы привода, а также вибрациями и ударами. Стандарты в этой области разработаны Советом автомобильной электроники (AEC).

Он была основан в 90-х годах по инициативе производителей автомобилей, которые в то время из-за бума потребительской электроники перестали быть в центре интереса поставщиков электронных компонентов. По этой причине предложение более дешевых компонентов с качеством, подходящим для нужд устройств бытовой электроники, было намного богаче, а тех, которые по стандарту требуются в автомобилях, стало не хватать. AEC должна была исправить это, разработав спецификации, которые помогут отличать компоненты для тяжелых условий эксплуатации от других. Результатом является набор глобальных обязательных стандартов.

Классификация по стандартам AEC

Первым документом разработанным Советом по автомобильной электронике в 1994 году, стал стандарт AEC Q100. Там стандартизированы испытания интегральных микросхем на прочность. В последующие годы также были подготовлены руководства по проведению этого типа испытаний дискретных полупроводниковых компонентов (AEC Q101) и пассивных компонентов (AEC Q200). В этих документах было предложено деление на классы.

Например в AEC Q100 микросхемы разделены на группы по диапазону рабочих температур: 0 (от -40°С до +150°С), 1 (от -40°С до +125°С), 2 (-40°С). С до +105°С) и 3 (от -40°С до +85°С). Стандарт AEC Q200 разделен на пять групп. В первую, с самым широким диапазоном рабочих температур (-50°С…+150°С), входят компоненты с самой большой сферой применения — их можно монтировать в любом месте автомобиля.

По крайней мере этим требованиям должны соответствовать резисторы SMD на керамической подложке и керамические конденсаторы с диэлектриком X8R. Более узкий диапазон (-40°С…+125°С) относится к танталовым и керамическим конденсаторам, термисторам, кварцевым резонаторам, катушкам, резисторам, трансформаторам и варисторам, устанавливаемым под капотом автомобиля.

Требования не ниже третьего класса (-40°С…+105°С) распространяются на алюминиевые электролитические конденсаторы, устанавливаемые в кабине в местах перегрева, и четвертого класса (-40°С…+85°С). ) – R/RC сети, дроссели, фольговые и перестраиваемые конденсаторы, которые можно установить в салоне. В четвертую группу, с наиболее узким температурным диапазоном (0°С…+70°С), входят элементы для использования вне авто.

Функциональная безопасность

К электронным компонентам и схемам автомобилей также предъявляются требования по обеспечению функциональной безопасности. Руководящие принципы в своей области для автомобильной промышленности включены в ISO 26262. Функциональная безопасность определяется там как отсутствие неоправданного риска, возникающего в результате опасностей, вызванных неисправностью электронных или электрических схем авто.

Элементы и системы автомобильной электроники

Для этого необходимо применять подход, основанный на оценке риска, на протяжении всего жизненного цикла компонента/системы, от проектирования до производства и эксплуатации. Во-первых, определить риск, поскольку предпринятые меры и предупредительные действия зависят от УПБА (уровня полноты безопасности автомобилей), присвоенного предмету анализа. Следует рассмотреть потенциальные сценарии риска безопасности. Примеры включают отказ тормозов и ненужное раскрытие подушки безопасности. Далее необходимо определить цели безопасности.

Например, в случае с дверью автомобиля, она может быть открыта или закрыта, в зависимости от того что более уместно. В случае возгорания автомобиля необходимо как можно скорее открыть двери чтобы пассажиры могли выйти из авто. Но во время движения их нельзя случайно открывать. Уровни УПБА дополнительно присваиваются целям безопасности.

ISO 26262 предусматривает 4 уровня полноты безопасности. Это: ASIL A, ASIL B, ASIL C и ASIL D. Первый из них оказывает наименьшее влияние на здоровье человека, поэтому такие компоненты не требуют или требуют лишь минимальных мер по снижению риска. В свою очередь, отказ компонентов ASIL D может представлять угрозу для здоровья или жизни, поэтому необходимы соответствующие меры по снижению риска.

Степень полноты безопасности определяется на основе трех параметров. К ним относятся: вероятность того что отказ компонента приведет к опасной для здоровья или жизни ситуации (воздействие, E), степень в которой водитель может предотвратить это (управляемость, C), и уровень риска (серьезность, S). Для каждой комбинации индексов E, C и S был назначен уровень ASIL. Его можно найти в таблице стандарта ISO 26262.

Итоги материала

Будущее рынка автомобильной электроники во многом зависит от того, в каком направлении они будут развиваться и будут ли популяризированы два типа транспортных средств — электрические и, в более отдаленной перспективе, автономные. В случае обоих типов автомобилей количество электронных компонентов и систем будет значительно больше, чем в обычных.

Правда их будущее, несмотря на большие ожидания, неопределенно – электромобилей из-за дороговизны и относительно небольшого пробега и малой доступности зарядных станций, а автономных автомобилей из-за низкого доверия пользователей.

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ

Электронная архитектура в автомобилестроении

Электронная архитектура в автомобилестроении

В связи с ростом требований к безопасности, комфорту, уровню развлечений и охране окружающей среды электронные системы в автомобилях получают все больше функ­ций и характеризуются высоким уровнем сложности. Для сохранения этого уровня в будущем требуются самые современные тех­нологии, методы и инструменты системной архитектуры. Вот о том, как выглядит современная электронная архитектура в автомобилестроении, мы и поговорим в этой статье.

  1. История развития электронной архитектуры автомобиля
  2. Электронная архитектура сегодня
  3. Тенденции развития электронной архитектуры
  4. Архитектура электронных систем автомобиля
    • Модели Е/Е-архитектуры
    • Функциональная сеть
    • Сеть компонентов
      • Технологическая модель
      • Узловая модель
      • Аппаратная модель ЭБУ
      • Программная модель ЭБУ
      • Сетевая модель связи
  5. Электрическая схема
  6. Жгут проводов и пространство установки
  7. Процесс разработки Е/Е-архитектуры
    • Управление требованиями
    • Разработка Е/Е-архитектуры
    • Оценка моделей
  8. Инструменты разработки Е/Е-архитектуры
  9. AUTOSAR
    • Цели и концепции AUTOSAR
  10. Перспективы развития электронных систем

История развития электронной архитектуры автомобиля

На протяжении многих десятилетий в исто­рии автомобилестроения использовалось со­всем небольшое количество электрических систем: зажигание, освещение, стеклоочи­стители, звуковой сигнал, датчик уровня топлива, различные индикаторы и радиопри­емник. Полупроводники — за исключением радиоприемников — изначально использо­вались только для выпрямления (генератор постоянного тока был заменен генератором переменного тока лишь в 1963 году) и затем для электронного управления (транзисторное зажигание появилось в 1965 году).

Реализовать некоторые автомобильные функции электромеханическими средствами и дискретными электронными компонентами либо не удалось вовсе, либо удалось лишь при несопоставимо высокой сложности. К примеру, первая электронная антиблокиро­вочная система (ABS) была разработана еще в 1970 году, но так и не дошла до серийного производства из-за своего размера, массы и стоимости. К середине 70-х годов развитие интегральных схем для широкого спектра областей применения дошло и до автопрома и вызвало революционные изменения в авто­мобильной электронике.

Читать статью  Зарядное устройство электроника как пользоваться

Один из первых примеров объединения элек­тронных систем в сеть появился при разра­ботке системы управления тяговым усилием (TCS). Это объединение в сеть было изна­чально реализовано чисто механическими средствами. Дроссельная заслонка в воз­духозаборной системе ДВС была оснащена устройством, которое можно было активиро­вать непосредственно через систему управ­ления тяговым усилием. Системе управления двигателем было невозможно распознать, чем вызвано перемещение дроссельной заслонки — нажатием педали газа или вме­шательством системы управления тяговым усилием.

Следующим этапом стала реализация электронного подключения к блоку управ­ления двигателем через интерфейс ШИМ (широтно-импульсной модуляции) для улуч­шения динамической реакции. Его можно было использовать для передачи сигнала на блок управления двигателем для уменьше­ния крутящего момента двигателя. Тогда оно было реализовано в виде дросселирования подачи воздуха, уменьшения впрыска или опережения момента зажигания.

Из-за постоянного ужесточения требова­ний к составу отработавших газов те воз­можности, что имелись на момент соедине­ния системы управления тяговым усилием и системы управления двигателем были уже недостаточны. Теперь требовалось сообщить системе управления двигателем, как умень­шение крутящего момента, запрашиваемое системой управления тяговым усилием, осу­ществляется в воздушном, топливном кана­лах или цепи зажигания. Поэтому было не­обходимо создать более мощный интерфейс, через который система управления тяговым усилием могла бы передать системе управ­ления двигателем запрос на необходимый крутящий момент и динамическую реакцию. I/I наоборот, фактический момент, обороты двигателя и резерв настройки тока должны были передаваться на блок управления TCS. Это оказалось сложно и дорого в плане коли­чества проводов, необходимых для передачи этих разных данных через дискретные и, к примеру, ШИМ-интерфейсы. Система шин CAN (сеть контроллеров) была представлена в 1991 году в качестве альтернативы дискрет­ным проводам. Так был заложен фундамент для современного объединения автомобиль­ных систем в сеть.

Электронная архитектура сегодня

В современных автомобилях практически все ЭБУ прямо или косвенно (например, через шлюзы) соединены друг с другом (рис. » Соединение ЭБУ между собой в современном автомобиле среднего класса» ). Объ­единение в сеть дошло до того, что 60 и более ЭБУ общаются между собой по нескольким шинам CAN и другим шинам — FlexRay, MOST (транспорт для медиа ориентированных систем) и LIN (локальная сеть взаимодействия). Так, например, блок управления системы динами­ческой стабилизации (ESP) передает в сеть информацию о скорости автомобиля. Автомо­бильный радиоприемник может использовать эту информацию, к примеру, для адаптации громкости к скорости автомобиля.

Соединение ЭБУ между собой в современном автомобиле среднего класса

Благодаря объединению ЭБУ в мощную сеть можно реализовать множество новых функций без какого-либо дополнительного оборудова­ния, т.е. исключительно путем обмена данными и с помощью программного обеспечения. Одним из примеров служит открывание дверных окон путем более длительного нажатия кнопки на брелоке дистанционного управления. Таким об­разом, например, можно равномерно вентили­ровать салон летом, когда открываются двери. Для этого блоки стеклоподъемников и система центрального запирания обмениваются необхо­димой информацией. Программное обеспечение запускается либо на ЭБУ системы центрального запирания, либо на ЭБУ стеклоподъемников. Во многих автомобилях эти две системы имеют общий ЭБУ, в этом случае новые программные функции можно реализовать даже еще проще.

Это демонстрирует тенденцию, изначально встречавшуюся в кузовной электронике: ин­теграция отдельных ЭБУ с образованием центрального ЭБУ (рис. «Сравнение децентралихованного и централизованного управления» ). Эти центральные ЭБУ соединяются с датчиками и исполнитель­ными механизмами либо через дискретные, аналоговые провода, либо через шины. По­следние значительно уменьшают количество штырьков в разъеме ЭБУ и, соответственно, стоимость проводки. Датчики и исполнитель­ные механизмы, подключаемые через шины, также называют «интеллектуальными». Для подключения к шине они должны иметь электронную схему, которая во многих слу­чаях также включает в себя функции конди­ционирования сигнала датчика или функции драйвера исполнительного органа. Но в то же время использование электронной схемы означает рост затрат на датчики и исполни­тельные механизмы. Таким образом, мини­мизация суммарных затрат, в том числе на электронику и провода, является важной задачей при определении концепций органи­зации сети.

Сравнение децентралихованного и централизованного управления

К примеру, логическая цепь для функции защиты пальцев у блоков стеклоподъемников во многих исполнениях расположена прямо в ЭБУ на электроприводе стеклоподъемника. Сигнал активации нормальной работы, на­пример, при упомянутом выше открывании стекол с брелока, передается по шине LIN с центрального ЭБУ кузовной электроники (ВСМ). В этом отношении речь идет о сервер­ной архитектуре.

Тенденции развития электронной архитектуры

Упомянутая выше централизация и исполь­зование интеллектуальных датчиков и испол­нительных механизмов в области кузовной электроники нашла распространение в других функциональных областях автомобиля (ин­формация для водителя, динамика движения и безопасность) и продолжит расширяться в ближайших поколениях автомобилей. В до­полнение к комбинации функций различных ЭБУ в одном центральном ЭБУ используются локальные главные компьютеры (рис. «Возможный сценарий для автомобиля представительского класса в будущем» ).

Возможный сценарий для автомобиля представительского класса в будущем

ЭБУ интеллектуальных датчиков и испол­нительных органов автомобиля зависят от этих главных компьютеров (ВСМ, IHU и т.д.). Функции, требующие высокой степени инте­грации команд управления информацией в основном воспроизводятся на этих главных компьютерах в программном обеспечении. Чтобы эти функции могли работать и на ЭБУ других платформ, требуется стандартная программная архитектура. Добиться этого можно посредством инициативы AUTOSAR (см. раздел «AUTOSAR» ниже).

Архитектура электронных систем автомобиля

С увеличением количества электроники в автомобиле растет и потребность в мощных процессах разработки и методах их описания для архитектуры электрических и электрон­ных систем.

Понятие «архитектура» обычно обо­значает искусство строительства. В строи­тельстве архитектор проектирует здание, создавая чертежи в различных проекциях, и строители-подрядчики выполняют работу в соответствии с пожеланиями заказчика и гра­ничными условиями. Проект абстрагируется от реальности в плане конкретных аспектов (например, геометрических условий или электропроводки). Здание может быть воз­ведено окончательно на основании проектов всех необходимых аспектов.

Применительно к автомобилям это назы­вается «Е/Е-архитектурой». «Е/Е» означает электрические и электронные аспекты авто­мобиля. «Проекты» Е/Е-архитектора в даль­нейшем мы будем называть общим понятием «модель».

У автопроизводителей и их поставщиков раз­ные взгляды на то, сколько и каких моделей требуется для полного описания электри­ческих и электронных систем автомобиля. Представленные ниже модели хорошо за­рекомендовали себя на практике и являются необходимой основой для описания объема Е/Е-архитектуры.

Понятие архитектуры часто используется в литературе и публикациях для обозначения самих моделей. Здесь четко различают ра­бочую операцию (разработка архитектуры) и представление результата (модель).

Модели Е/Е-архитектуры

Модели Е/Е-архитектуры отражают ре­зультаты различных аспектов интеграции электронных систем в автомобиле (рис. «Модели Е/Е-архитектуры» ). Эти аспекты обычно рассматриваются одно­временно, так, как и геометрия (структура кузова) и новые системы анализируются на этапе разработки концепции. В процессе раз­работки автомобиля может возникнуть ситуа­ция, когда электронная система в выбранной технологии не вписывается в имеющееся пространство. В этом случае нужно найти компромисс.

Модели Е/Е-архитектуры2 Схемы

Функциональная сеть

Функциональные модели — предваритель­ная стадия конкретных технических систем. Они описывают элементы, необходимые для реализации необходимых характеристик, не вдаваясь в конкретную технологию. На при­мере рулевого управления с наложением это означает разбивку на такие элементы, как:

  • Переменное передаточное отношение;
  • Управление стабилизацией;
  • Модель автомобиля;
  • Исполнительный механизм;
  • Автомобиль;
  • Водитель.

Схема протекания сигнала со стандартными элементами на примере рулевого управления с наложением

Функциональные модели (рис. «Схема протекания сигнала со стандартными элементами на примере рулевого управления с наложением» ) обычно создаются в виде схемы прохождения сигна­лов по DIN 19226.

Сеть компонентов

Технологическая модель

Технологическая модель описывает, какая техническая реализация используется для ука­занных элементов без объединения их в мо­дули, такие как электронные блоки управления (ЭБУ). Создаются «технологические блоки».

Какие электронные системы установлены в современных машинах

В данной статье рассматриваются электронные компоненты автомобилей, что они собой представляют и как работают.

ABS позволяет избежать блокировки колес и заноса при торможении

ABS позволяет избежать блокировки колес и заноса при торможении

ABS («ANTIBLOCK BRAKE SYSTEM»)

ABS – тормозная антиблокировочная система. Данная система позволяет избежать блокировки колес при резком торможении или при торможении на скользкой дороге. Блок управления несколько раз прижимает и отпускает колодки тормозные, в результате чего колеса начинают проворачиваться. ABS состоит из: датчиков ускорения (скорости), установленных на колесных ступицах; управляющих клапанов, которые установлены в магистрали системы торможения; блока управления, получающего сигналы с датчиков и контролирующих работу клапанов.

Во время торможения ABS постоянно и точно определяет скорости вращения всех колес. Если одно или несколько колес замедляют движение быстрее максимально рассчитанной скорости торможения автомобиля и, исходя из показаний акселерометров, то ABS командует модулятору в системе торможения, ограничивающему тормозное усилие на колесе (колесах). Тормозное усилие после того как вращение колеса приходит в допустимую норму восстанавливается.

4WS («4 WHEEL STEER»)

4WS – 4 управляемых колеса. Специальные рулевые механизмы встроены в заднюю подвеску, с помощью которых и поворачиваются колеса. Управление осуществляется специальным электронным блоком на основе данных о скорости, угле поворота руля и колес и т.д., полученных от датчиков автомобиля.

Работа системы осуществляется в двух режимах:

  1. При малой скорости задние колеса поворачиваются в противоположном направлении от передних колес, и при выполнении маневра руль вращается на меньший угол. То есть увеличивается чувствительность рулевого управления и автомобиль становится более маневренным.
  2. При большой скорости движения при перестроении или быстром вираже задние колеса поворачиваются в ту же сторону только на небольшой угол, что и передние колеса.

ACC («ACTIVE CRUISE CONTROL»)

ACC – активный круиз контроль. В данной системе используется трехлучевой радар для слежения за дорогой впереди автомобиля. Если впереди идущий автомобиль перестраивается на вашу полосу, то ACC определяет его направления движения и положение, а также рассчитывает ориентировочную скорость на основе данных сигнала радара. Система изменяет скорость автомобиля, чтобы сохранить безопасное расстояние между автомобилями. Уменьшение скорости осуществляется путем уменьшения тяги автомобиля или при помощи тормозов. Значение безопасного расстояния можно регулировать настройками.

ACC («ACTIVE COMENING CONTROL»)

ACC – автоматическая система стабилизации поперечного положения кузова в поворотах и изменяемого хода подвесок. Также может называться ACE, CATS, CBC, BCS. ACC работает вместе с ABS , чтобы предотвратить снос задней оси при поворотах на высокой скорости. Работа ACC построена на перераспределении нагрузок между элементами подвески. При боковом наклоне (крене) тяги перемещаются в различные стороны (один опускается, другой поднимается). Средняя часть закручивается.

АСС стабилизирует положение машины при повороте

АСС стабилизирует положение машины при повороте

АСС пытается, как бы поднять кузов со стороны наклона, а с противоположной – опустить. Таким образом, АСС обеспечивает выравнивание автомобиля к плоскости дороги. Помимо выравнивания, также достигается повышение сцепных свойств колес автомобиля с дорогой при повороте.

AGS («ADAPTIVE GETRIEBE-STEUERUNG»)

AGS – самонастраиваемая система АКПП. AGS выбирает оптимальную передачу при движении автомобиля. Для определения стиля вождения оценивается работа педалью газа. Отслеживается граница пробуксовки и момент привода, в результате выбирается одна из системных программ («норма», «зима», «горастарт с места») для выбора передач. Вдобавок, AGS регулирует излишние переключения передачи.

APC («AUTOMATIC PERFORMANCE CONTROL»)

APC – система, которая управляет двигателем (зажигание, смесь топливная).

ASC («ANTI-SLIP CONTROL»)

ASC – противопробуксовочная система. Также называют ASR, ASC+T, TCS, ETC, TRC, TRACS, STC. Главная задача, которую выполняет система – это обеспечение устойчивости автомобиля при движении в гору или резком старте по скользкой поверхности. Обеспечить устойчивость удается благодаря перераспределению крутящего момента на те колеса, которые по имеющимся данным имеют лучший показатель сцепления с дорогой, а если этого оказывается недостаточно, тогда уменьшается подача в двигатель топливной смеси, тем самым уменьшая поступающую мощность на колеса. Система предназначена для работы на скоростях менее 40 км/ч.

A-TRC («ACTIVE TRACTION CONTROL»)

A-TRC – активная противопробуксовочная система. Данная система является более интеллектуальной версией обычной. A-TRC не позволит буксовать автомобилю в самых неблагоприятных условиях.

A-TRC блокирует пробуксовку колес

A-TRC блокирует пробуксовку колес

A-TRC автоматически определяет пробуксовки ведущего колеса, подтормаживает колесо и снижает крутящий момент, передаваемый на него, распределяя на другие колеса. В итоге на ведущее колесо подается оптимальный крутящий момент. A-TRC почти полностью заменяет блокировку дифференциалов в сложнейших условиях, при этом торможение колес не такое сильное при крутых поворотах. A-TRC совместно с VSC обеспечивают отличную управляемость автомобилем на скользкой дороге.

AUC

AUC – система контроля загрязнения наружного воздуха. Если система обнаруживает в воздухе большое содержание вредных веществ, то она автоматически переводит кондиционер на режим рециркуляции.

Читать статью  Как работают электрические системы?

BA («BRAKE ASSIST»)

BA – электронная система управления давлением в гидравлической системе тормозов. Также называют PABS, PA, BAS. BA самостоятельно увеличивает давление в тормозной системе при необходимости резкого торможения либо недостаточного усилия на педаль.

ВА помогает при экстренном торможении

ВА помогает при экстренном торможении

Причем повышение давления происходит намного быстрее, чем это мог бы сделать человек. Распознавание экстренного торможения происходит по скорости нажатия педали и давлению на педаль

D-4

D-4 – технология непосредственного впрыска топлива. Топливо подается непосредственно в камеру сгорания под высоким давлением. Благодаря данной технологии значительно увеличиваются эксплуатационные характеристики двигателя. Снижается топливный расход, уменьшается уровень вредных веществ в газе.

DAC («DOWNHILL ACESS CONTROL»)

DAC – система помощи спуска по склону. При движении по крутым спускам, если система DAC определяет, что скорость вращения колес меньше скорости автомобиля, то она в автоматическом режиме изменяет тормозное усилие на разных колесах.

DAS помогает при спуске

DAS помогает при спуске

DAC обеспечивает поддержание скорости в районе 5-7км/ч, которая идеально подходит при крутых спусках, и 3-5км/ч при движении задним ходом на крутых спусках.

DBC («DYNAMIC BRAKE CONTROL»)

DBC – система динамического контроля над торможением. DBC является дополнением к DSC (динамический контроль устойчивости). Примерно 90% водителей не в состоянии вовремя выполнить экстренное торможение. Несмотря на резкое нажатие на педаль тормоза, давление на педаль недостаточное и последующее увеличение давления увеличивает тормозную мощность незначительно. В итоге тормозная мощность используется не полностью.

Система DBS позволяет ускорить и усилить нарастание давления в тормозной системе при экстренном торможении и обеспечивает минимальный тормозной путь даже при несильном нажатии педали тормоза. Определяющими величинами являются данные: скорость нарастания давления и прикладываемое к педали усилие. Система DBS работает не по вакуумному принципу, а по принципу гидравлического усиления. При экстренном торможении такая система обеспечивает наилучшую и наиболее точную дозировку тормозного усилия.

DDE («Diesel Digital Elekronik «)

DDE – электронная цифровая система управления дизельным двигателем. DDE регулирует момент начала впрыска, количество подаваемого топлива и давление наддува, что обеспечивает наиболее оптимальное соответствие данных параметров во всех режимах работы двигателя, даже в экстремальных режимах.

DDE улучшает работу дизельного двигателя

DDE улучшает работу дизельного двигателя

Автомобиль становится экономичнее (топливный расход), тяговитым (работа двигателя плавная) и экологичнее (понижается токсичность в выхлопных газах). Отслеживание усилия нажимания на педаль газа, её положение позволяет точнее рассчитать время, количество, а также давление впрыска топлива, что адаптирует рабочий режим двигателя под различные условия и стиль езды.

DME («Digital Motor Elekronik»)

DME — электронная цифровая система управления двигателем. DME осуществляет управление и контроль всеми функциями (зажигание, впрыск топлива). DME поддерживает оптимальную мощность при наименьших токсичности и топливном расходе. Датчики постоянно отслеживают все параметры, которые оказывают влияние на работу двигателя. Приходящие данные от датчиков оцениваются и кодируются в команды систем зажигания и впрыска.

DME обрабатывает порядка 1000 сигналов каждую секунду, среди которых сигналы от датчиков температуры системы охлаждения, положения дроссельной заслонки, плотности и температуры воздуха, положения коленчатого вала, скорости автомобиля, положения педали газа. DME проводит сравнение всех входящих сигналов с реакциями остальных систем. При неисправности одного из датчиков DME использует сохраненное значение по умолчанию для данного параметра из памяти. Также DME ведет отслеживание за работоспособностью электрооборудования. При помощи различных датчиков замеряется уровень заряда аккумулятора и его состояние, а также потребление электроэнергии в текущий момент. Поддерживая аккумуляторную батарею в работоспособном состоянии, DME обеспечивает в произвольный момент гарантированный пуск двигателя.

EBD («ELECTRONIC BRAKE DISTRIBTION»)

EBD – электронная система распределения тормозного усилия. Также называют EBV. Работает совместно с ABS и при помощи электроники обеспечивает равномерное распределение между всеми колесами тормозного усилия. Это необходимо для оптимального сцепления каждого колеса с дорогой исходя из скорости, загрузки автомобиля, характера покрытия и т.п.

EBD снижает тормозной путь

EBD снижает тормозной путь

В большинстве случаев применяется для исключения возможности блокировки колес на задней оси. EBD начинает работать до ABS, либо после несрабатывания последней в результате поломки.

EBM («ELECTRONIC BRAKE MANAGEMENT»)

EBM – система электронного управления тормозами. По сути, это общее название систем контроля тормозных систем и управляемости этих систем, таких, как ABS, ACS+T, DSC и DBC. Опираясь на показания различных датчиков, EBM определяет уровень вмешательства, необходимый для восстановления хорошей управляемости автомобилем, задействовав одну либо сразу несколько систем управления. К датчикам, показания которых использует EBM, относятся: угол крена; угол поворота рулевого колеса; датчики скорости вращения колес и силы торможения.

EBS («ELECTRONIC BRAKING SYSTEM»)

EBS – электронная система торможения. В EBS педаль тормоза не имеет механического соединения с тормозной системой. Другое название «электронная педаль», передвижение которой преобразуется в виде электрического сигнала и подается в блок управления. Далее анализируются данные, полученные от датчиков (скорость, нагрузка, угол поворота рулевого колеса, поперечное ускорение). На основе анализа этих данных электроника дает команду своим исполнительным механизмам на регулирование давления в контурах системы тормоза.

ECT («ELECTONICALLY CONTROLED TRANSMISSION»)

ECT – электронная система управления переключением передач в АКПП последнего поколения. Учитывая положение дроссельной заслонки, скорость автомобиля, температуру двигателя, определяет какую передачу включать. Тем самым обеспечивает наиболее мягкое переключение передач, и увеличивает ресурс трансмиссии и двигателя. Есть возможность установки алгоритма переключения передач: «зима», «эконом», «спорт».

Современный автомобиль немыслим без электроники

Современный автомобиль немыслим без электроники

Заключение!

Эти системы в значительной мере повлияли на коренное изменение сущности современного автомобиля. Благодаря электронике узлы и механизмы стали работать надежнее, а сам транспорт – безопаснее.

  • Новости
  • Практикум

В Москве разрешили и дальше парковаться под запрещающими знаками

Как рассказал заместитель мэра Москвы по вопросам транспорта и развития дорожно-транспортной инфраструктуры Максим Ликсутов, такое решение было принято из-за малого числа нарушений, совершенных водителями на улицах, где действовал эксперимент, сообщает m24.ru. Напомним, в ноябре 2015 года водителям разрешили легально парковаться с 22:00 до 8:00 под запрещающими знаками .

Читать далее.

Renault представила новый седан Megane (фото)

На мировых рынках новый седан Renault Megane заменит модель Fluence, который выпускался в различных странах с 2009 года. В передней части седан Renault Megane ничем не отличается от хэтчбека, представленного в 2015 году. В задней части стоит отметить характерную оптику, выполненную в стиле флагманского седана Talisman. Точные размеры новинки .

Читать далее.

В России будут продавать китайцев с платформой от Saab

В определённом смысле BAIC Group уже присутствует в России: так, у нас продаются грузовики BAW и Foton. Однако на этот раз китайцы настроены продавать в нашей стране именно легковушки. Как пишет «Российская Газета», замминистра промышленности и торговли РФ Александр Морозов уже подтвердил получение компанией одобрение типа транспортных средств, а одним из .

Читать далее.

Новый Lifan оказался дешевле, чем Lada Vesta

В России для седана будет доступен безальтернативный 1,5-литровый двигатель мощностью 100 л.с., пару которому на первое время составит исключительно 5-ступенчатая механика. Впрочем, если публика попросит двухпедальную версию, в «Лифан Мотор Рус» обещают изучить возможность начала продаж машин, оснащенных вариатором. Самый доступый Lifan Solano II будет .

Читать далее.

Кризис на авторынке: провал Гранты и взлет Форда

И пусть сейчас цифры падения не так сильно пугают — всего минус 10%. Но ведь это «минус десять» по сравнению с мартом 2015 года. Который в свое время называли «очень плохим месяцем»… Так что для понимая кризиса лучше смотреть на март не прошлого, а 2014 года. И тогда все ясно: в 2014 году .

Читать далее.

Видео дня: самый неожиданный способ угона

Действия преступника, которые были засняты камерой видеонаблюдения в китайской провинции Хунань, стали настоящим хитом в сети. Мужчина решил похитить велосипед, который был привязан цепью к одному из деревьев. Как это было, увидите в ролике ниже. P.S. — Удалось ли китайским властям в итоге задержать угонщика .

Читать далее.

В Сочи Maybach Стинга отправили на штрафстоянку

Перед выходом на сцену Стинг (настоящее имя — Гордон Самнер) попросил своего водителя съездить в магазин, чтобы купить инжира и сувениров. Но пока шофер расплачивался на кассе, машину — по всей видимости, припаркованную не по правилам — эвакуировали. Как отмечает «КП-Краснодар», из-за этого британский певец около получаса ждал, пока подадут подменный .

Читать далее.

Каждой семье по два автомобиля — новая эра в Южной Корее

Если в 1970 году в Южной Корее было всего 46 тысяч автомобилей, то в апреле 2016 года их насчитывалось 19,89 млн шт., а в мае — 19,96 млн шт. Таким образом, как поясняют эксперты, в этой азиатской стране наступила новая эра автомобилизации. Об этом со ссылкой на агентство «Ренхап» сообщает РИА .

Читать далее.

Депутаты отказались смягчать наказание за встречку

Ранее депутаты Псковского областного собрания предлагали не лишать прав водителей, которые попались на данном нарушении впервые. Вместо этого законопроект предусматривал для таких водителей наказание в виде штрафа 5-10 тыс. рублей. Однако, как сообщает агентство «Москва», с таким предложением в Госдуме не согласились. Напомним, сейчас за первый выезд на полосу .

Читать далее.

За город на автомобиле: власти Москвы дали советы

Как рассказали в ЦОДД, сегодня, 6 мая, в течение дня будет наблюдаться осложнение дорожного движения на вылетных магистралях в сторону области. Это связано с открытым дачным сезоном и предпраздничными днями, во время которых загруженность дорог возрастает еще больше. Основные затруднения на дорогах, по информации ЦОДД, придутся на период с 16:00 до 20:00. Поэтому .

Читать далее.

Самые угоняемые марки машин в Питере

Угон автомобилей это извечное противостояние автовладельцев и воров. Однако как отмечают в правоохранительных органах, каждый год спрос на ворованные автомобили заметно изменяется. Еще лет 20 назад основная часть угонов приходилась на продукцию отечественного автопрома и в частности на ВАЗ. Но .

0 Читать далее.

Обзор пикапов – три «бизона»: Форд Рейнджер, Фольксваген Амарок и Ниссан Навара

Что только люди не придумают, чтобы ощутить незабываемую минуту азарта от езды на своём автомобиле. Сегодня мы познакомим вас с тест-драйв пикапов не простым способом, а соединив его с воздухоплаванием. Нашей целью было обследовать характеристики таких моделей, как Ford Ranger, .

0 Читать далее.

Какие цвета машин пользуются наибольшей популярностью

По сравнению с надежностью и техническими характеристиками, цвет кузова автомобиля является, можно сказать, мелочью – но мелочью достаточно важной. Когда-то цветовая гамма транспортных средств была не особенно разнообразной, но эти времена давно канули в лету, и сегодня к услугам автолюбителей представляется широчайший .

0 Читать далее.

ГДЕ можно купить новую машину в Москве?, где продать машину в москве быстро.

Где можно купить новую машину в Москве? Количество автосалонов в Москве скоро достигнет отметки в тысячу. Сейчас в столице можно купить практически любой автомобиль, даже Ferrari или Lamborghini. В борьбе за клиента салоны идут на всевозможные хитрости. Но ваша задача .

0 Читать далее.

Какой седан выбрать: Almera, Polo Sedan или Solaris

В своих мифах древние греки рассказывали о существе, имеющем голову льва, туловище козы и змею вместо хвоста. «Крылатая Химера была рождена крохотным созданием. При этом она сверкала красотой Аргуса и ужасала уродством Сатира. Это было чудовище из чудовищ». У слова .

0 Читать далее.

КАК выбрать свой первый автомобиль, выбрать первую машину.

Как выбрать свой первый автомобиль Покупка автомобиля — это большое событие для будущего владельца. Но обычно покупке предшествуют как минимум пара месяцев выбора машины. Сейчас авторынок заполнен множеством марок, в которых рядовому потребителю довольно сложно ориентироваться. .

0 Читать далее.

Рейтинг надежных машин 2020-2021 года

Надежность, безусловно, является наиглавнейшим требованием к автомобилю. Дизайн, тюнинг, любые «навороты» – все эти ультрамодные ухищрения по степени своей важности неизбежно меркнут, когда заходит речь о надежности транспортного средства. Машина должна служить своему владельцу, а не доставлять ему проблемы своими .

0 Читать далее.

КАК выбрать автомобиль напрокат, выбрать машину напрокат.

Как выбрать автомобиль напрокат Прокат автомобиля – весьма востребованная услуга. В ней зачастую нуждаются люди, приехавшие в другой город по делам без личного автомобиля; те, кто желает произвести благоприятное впечатление с помощью дорогой машины и т.п. И, разумеется, редкая свадьба .

0 Читать далее.

ВЫБИРАЕМ автомобиль: «европеец» или «японец», Покупка и продажа.

Выбираем автомобиль: «европеец» или «японец» Собираясь приобрести новый автомобиль, автолюбитель несомненно столкнется с вопросом о том, что же предпочесть: левый руль «японца» или правый – законный – «европейца». .

0 Читать далее.

Тест четырёх седанов: Skoda Octavia, Opel Astra, Peugeot 408 и Kia Cerato

Перед тестом можно смело сказать, что это будет «Трое против одного»: 3 седана и 1 лифтбек; 3 наддувных мотора и 1 атмосферник. Три машины с автоматом и только один – с механикой. Три автомобиля – бренды Европы, и один – .

0 Читать далее.

  • Обсуждение
  • Вконтакте

Источник https://2shemi.ru/elementy-i-sistemy-avtomobilnoy-elektroniki/

Источник https://press.ocenin.ru/elektronnaya-arhitektura-v-avtomobil/

Источник https://avtomotospec.ru/raznoe/sovremennye-elektronnye-sistemy-avtomobilya.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *